KAMAN INSTRUMENTS A Division of Kaman Aircraft Corporation P. O. Box 9431 Austin, Texas 78756

PHASE I REPORT /

CONTRACT NAS 9-5880

"DEVELOPMENT OF INSTRUMENTATION FOR MEASUREMENT OF BONE DENSITY"

January 10, 1967,

LIBRARY COPY

JUN 29 1967

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

TABLE OF CONTENTS

	-	Page		
I.	DESCRIPTION OF SYSTEM			
	A. System Operation	ı		
	B. Description of Digital System	3		
	C. System Specifications (Digital Instrumentation)	5		
II.	OPERATING INSTRUCTIONS FOR THE DIGITAL SYSTEM	6		
III.	DIGITAL COMPUTER PROGRAM			
	A. Method and Accuracy of Computation Procedure	10		
	B. Program Details	13		
	C. Program Loading, Operation and Output	51		
	D. Interface - Computer to Densitometer System	60		
IV.	SYSTEM MAINTENANCE	61		
٧.	CIRCUIT DOCUMENTATION	62		

I. DESCRIPTION OF SYSTEM

A. System Operation

The purpose of the bone density measuring system is to evaluate the integrated bone density over a specific cross-section of bone. The problem may be described as follows.

A roentgenogram of a standard aluminum calibration wedge and the desired bone is obtained in a single exposure. This insures uniform exposure and processing conditions for the reference and the variable to be measured. The developed film is then scanned to measure optical density by means of a scanning microdensitometer. First, the image of the wedge is scanned to determine the relation between optical density and the thickness of the reference wedge as recorded on this particular film. The graphical representation of the optical scanner output for a scan of the wedge image may look similar to the curve shown in Figure 1.

Time (Distance along wedge or wedge thickness)
FIGURE 1. Typical Wedge Scan Curve

Secondly, the bone image is scanned along the desired crosssection. A typical curve is depicted in Figure 2.

FIGURE 2. Typical Bone Scan Curve

The curves shown in Figures 1 and 2 represent the basic inputs for measurement of bone density. The computation system must then convert the optical scanner voltage output for the bone scan to a curve of equivalent density (in terms of wedge thickness) and integrate the area under the resulting curve. The conversion between optical scanner output for the bone scan and equivalent wedge thickness is made using the first curve. The curve is entered at the value of optical scanner output and the wedge thickness is read on the abscissa. This equivalent wedge thickness is used in the subsequent integration of the density.

In the analog system in use at Texas Woman's University, the conversion between optical scanner output during the bone scan and equivalent wedge thickness is made by using a nonlinear resistance slidewire output from a chart recorder. The nonlinearity can be manually adjusted with twenty potentiometers so that the output is approximately linear during a wedge scan. The integration is accomplished by using an electro-mechanical integrator. A block diagram of this system is shown in Figure 3.

FIGURE 3. Block Diagram of Analog Bone Density Computer System

B. Description of Digital System

A system utilizing a digital computer has been implemented to perform the computation functions similar to those performed by the analog system. The optical scanner output voltage is converted to a digital format for storage and subsequent processing by the digital computer. After both the wedge and bone scans have been completed, the computer converts the stored bone scan data to equivalent wedge thickness by using the stored wedge scan data. The bone density is then integrated along the scan by using the trapezoidal approximation integration formula. The block diagram of the digital instrumentation is shown in Figure 4.

FIGURE 4. Block Diagram of Digital System

In operation, the data collection by the computer is controlled by the limit switches of the densitometer which mark the beginning and end of the scans. The sampling times are controlled by a clock in the computer. The teletype unit is used to control the computer by directing it to prepare for a wedge or bone scan, specifying bone scan speed used, specifying printout options desired, and in typing identifying information on the printout.

C. System Specifications (Digital Instrumentation)

The digital system prints out the integrated bone density in both the arbitrarily scaled system in which the area under the wedge scan curve is defined to be 6500 and also in the units of equivalent cross-section area of aluminum (square centimeters). The system will optionally print out subtotal areas of ten approximately equal length segments. (The lengths will be equal if the total number of samples is divisible by ten. If the total number is not divisible by ten, the initial increments will be increased by one sample each until the odd number of samples is utilized.) In addition to the integrated density and bone length data printed out, the printout includes a format for adding identifying information to the output page for a permanent record.

The system has the capacity to store 170 samples of the wedge scan data and 300 samples of bone scan data. The sampling rate established in the program is 1 sample per second. The standard wedge normally produces approximately 156 samples over 13 centimeters at a 5.0 cm/sec scan rate. The capacity of 300 samples of bone scan data allows scanning a bone length of 25 centimeters at 5.0 cm/sec scan speed. In use, the bone scan speed should be chosen so that the number of samples is as large as possible, up to a maximum of 300. Note: If the storage limitations of the system are exceeded, the printout data will not be valid.

The system is set up to operate with an analog voltage input in the range of 0 to -10 volts where 0 volts represents maximum optical density.

The accuracy is primarily dependent on operator care in setting up the images for scanning. (A more detailed discussion is contained in Section III of this report.)

II. OPERATING INSTRUCTIONS FOR THE DIGITAL SYSTEM

This section assumes that the program is in the computer and ready for operation. A later section will specify the means of loading and/or checking the program routine in the computer.

The program is operated as follows:

- 1) Turn the POWER key on the computer. This provides power to the computer and its peripheral equipment. (Power to the densitometer, Speedomax G recorders, etc., is controlled in the usual manner.)
- 2) The program is started as follows: Set OCTAL 0201 in the SWITCH REGISTER. Set all Instruction Switches up except DEP (this switch is spring-loaded down), SING STEP and SING INST. Depress LOAD ADD, and then depress START. The teletype machine should print WAITING. (If WAITING is not printed out, the program in the machine should be checked as described in Section III C.) The switch positions described above are visually depicted in the accompanying diagram. No further computer switch manipulations are required.
- 3) Any time WAITING is typed out, the program is waiting for two control numbers to be typed into the computer. These two numbers, designated KS and IPS in the program are single digit numbers and are entered in sequence. They should be entered without a decimal point and separated by a comma. These numbers direct the program to prepare for either a wedge or bone scan and specify the printout desired. When it first starts and prints out WAITING, the program is waiting for control numbers to direct it to scan the wedge and to specify if the heading printout is desired. The control numbers should be typed in as either 9,0 or 9,9. If 9,0 is entered, the heading and information printout is skipped. If 9,9 is entered, the heading printout is made. During this printout, the program stops after each colon and waits for the operator to type in the identifying information. The program will resume after a line-feed is typed.

- 4) When the program is ready for the wedge, the computer will type WEDGE. Prepare the optical scanner to scan the wedge (dark end first). When ready to scan, depress the tab bar. Note: the wedge scan speed should be 5.0cm/min. The scan limits to the computer are controlled by the scan drive switch and the stop limit switches. Scans should be started at one desired limit and terminated by the limit switch at the other limit.
- 5) Switch the scanner drive on. The switch and the limit on the scanner start and stop data collection by the computer.
- When the wedge scan is completed, the computer will type WAITING. The control numbers should then be entered as either -9,0 or 0,-9. These control numbers direct the computer to prepare for a bone scan and specify the form of the data printout. If -9,0 is entered, the computer will type out only the total area under the density curve. If 0,-9 is entered, the computer will type out the area under each of ten approximately equal segments and the total area.
- 7) After the above entry, the computer types SCAN SPEED. The scan speed of the bone scan must be typed in. The scan speed should be typed in with a decimal point such as in 5.0 or 2.5 centimeters per minute.
- 8) The program then allows one line of identification to be typed.

 A carriage return causes the program to proceed.
- 9) The program then prepares to accept the bone scan data and the computer types BONE. Prepare the x-ray image for the scan. When ready to scan, depress the tab bar.
- 10) Switch the scanner drive on. The drive switch and limit switch on the scanner start and stop data collection by the computer. The computer proceeds to use the bone scan data to find wedge equivalents, integrates the values, and prints out the results.
- 11) The program then returns to the WAITING status ready to receive a new set of control numbers. At this point several alternatives

are available. If the next bone scan will require the use of a different reference wedge image, return to Step 3 of this procedure. If the next bone scan will require only a change in bone scan speed, return to Step 6 of this procedure. If the next bone scan requires no change in the reference wedge or scan speed, the control numbers may be entered as 0,0 or 0,9. These two entries cause the computer to use the same scan speed entered previously. The 0,9 entry causes the computer to type out the area under each of ten approximately equal segments of the density curve and the total area. The 0,0 entry causes printout of only the total area.

PDP-8 COMPUTER SWITCH PO

OPERATING INSTRUCTIONS:

- I. Turn Power Key on.
- 2. Set switches as shown above.

 Depress LOAD ADD, release.

 Depress START, release.

40 35 4**5-1**54

- 3. After <u>WAITING</u> is typed out, enter one of the following on the teletype:
 - 9,0 If heading printout is not desired
 - 9:9 If heading printout is desired

If heading is printed, type in identifying information each time printout stops; proceed to next heading printout by depressing the line-feed key. After the heading is finished computer will printout WEDGE.

If heading is skipped, computer will printout WEDGE.

- 4. Prepare optical scanner for wedge scan, and set stop limit switch.

 Just prior to beginning wedge scan with switch on densitometer,

 depress tab bar on the teletype.
- 5. Switch scan drive on.
- 6. After the scan is completed, the computer will printout <u>WAITING</u>. Enter one of the following on the teletype:
 - -9, 0 If only total area under the bone density curve is desired.
 - 0, -9 If total area and area's of ten segments are desired.

DIGITAL BONE DENSITY

SITIONS FOR BONE DENSITY PROGRAM

- 7. The computer will printout <u>SCAN SPEED</u>. Enter the bone scan speed on the teletype with a decimal point as in 5.0 or 2.5 centimeters per minute.
- 8. The program allows space for the operator to type in one line of information at this point. A <u>CARRIAGE RETURN</u> causes the program to proceed.
- 9. Prepare film for bone scan and set stop limit switch. Just prior to beginning bone scan with switch on densitoreter, depress tab bar on teletype.
- 10. Switch scan drive on.
- II. At end of scan, computer will print data and will then print WAITING.

Proceed as follows:

- a. To scan a new wedge bone combination, return to step 3 in this procedure.
- b. To use last wedge scan information, but a different bone scan speed, return to step 6 in this procedure.
- c. To use last wedge scan information and same scan speed, type on the teletype:
 - 0,0 If only total area is to be printed.
 - 0,9 If total and 10-segment areas are to be printed.

III. DIGITAL COMPUTER PROGRAM

A. Method and Accuracy of Computation Procedure

Description of Transfer Function Procedure

The digital computer samples the output of the optical scanner at equal increments during the scan of the reference wedge and the bone. The data collected is stored in the computer memory for subsequent processing.

The wedge image is scanned first. Optical scanner output is sampled at equal time intervals and the values are sequentially stored in computer memory. The uniform speed scan is started at the thin end of the wedge and the thickness of the wedge is a linear function of distance, thus the time scale and storage location indexes are linearly related to wedge thickness. The scanner output sample stored in each location is a measure of the optical density at a point and the index of the location is a measure of the wedge thickness corresponding to that optical density. This data stored during the wedge scan is the transfer function relating optical density to wedge thickness.

The bone image is scanned in the same manner with the samples of the optical scanner output being stored sequentially in the computer memory. These samples are also taken at equal time intervals with a constant scan speed causing them to be uniformly spaced along the bone image.

After the bone has been scanned, the computer converts each sample of the optical scanner output to an equivalent wedge thickness using the stored transfer function. This conversion is made by comparing the scanner output sample from the bone to successive output samples from the wedge until a wedge sample larger than the bone sample is found. The equivalent wedge thickness is then computed by using linear interpolation between the index of the larger wedge sample and the index of the immediately preceeding smaller sample.

The integrated density of the bone is computed by using the

equivalent wedge thickness at each sample point and applying the trapezoidal approximation integration formula. The output is normalized such that if the standard wedge were to be rescanned (instead of using a bone), the area under the density curve would closely approximate 6500.

Accuracy limitations

The accuracy limitations introduced by the use of the digital computer are listed below:

- (a) Quantization in the analog to digital conversion at the input. (The resolution and stability of the analog to digital converter is at least an order of magnitude better than the accuracy of the analog input, so this effect is negligible.)
- (b) Sampling the wedge and bone image scans at intervals causes a slight reduction in accuracy. The wedge is typically represented with 156 uniformly spaced samples, while the number of samples from the bone image is determined by the bone length and scan speed. The computer program can accept 300 bone image samples taken at one second intervals. (Thus the scan speed should be selected to obtain as many points as possible, up to a maximum of 300.)
- (c) The most serious accuracy limitation appears to be "noise" on the optical scanner output during the wedge scan. This noise is most prominent where the image is very light and the optical density is determined by the presence of relatively few silver particles appearing in the scanner beam path. This noise could be smoothed effectively by using a larger scanning aperture, but this is not feasible with the present microdensitometer as the calibration depends on using the same aperture for both the wedge and bone scan.

B. Program Details

The computer used for this application was a basic Digital Equipment Corporation PDP-8 with a memory of 4096 twelve bit words and with only a basic adding arithmetic unit (A register only). The capacity of the computer and the problem are closely matched to each other. To be able to achieve the maximum flexibility in modification of the program and to be able to perform the calculations required, the PDP-8 FORTRAN system was chosen. The FORTRAN system furnished the flexibility of modification, the necessary arithmetic packages, and flexible input and output options. The space requirements for supplementary subprograms, the basic FORTRAN control program, and heading information exceeded the memory of the computer. In order to overcome this problem, the subprograms were overlayed over unused portions of the FORTRAN operating system and the heading information was combined with control information and condensed to a character string that is scanned by the control program INPRN. Finally hand coded instructions were inserted to utilize the last remaining spaces in the memory. There were three known unused locations in the computer upon completion of the program.

The main program is written in FORTRAN and is primarily the arithmetic portion of the program. One may note that there are some odd PAUSE statements in the program. These PAUSE statements with numbers following them are departures from the main program to a subroutine. The FORTRAN system generates an address carrying jump to the octal equivalent location given by the decimal number following PAUSE.

The normalization and integration in the main program is based on the assumption that the thickness of the wedge is a linear function of length and that the total area under the normalized wedge curve is 6500. The wedge scan appears nonlinear because of the process of roentgenographic exposure and processing.

The total area under the normalized wedge curve is assumed to be Area = $\frac{1}{2}$ * ANW * h = 6500

where ANW is the length of the wedge and h is the maximum thickness. The thickness (B) of the wedge at any point (K) is given by

$$B = \frac{K * h}{ANW} .$$

Combining the two equations yields

$$B = \frac{13000 * K}{ANW} .$$

The factor $\frac{13000}{\text{ANW}}$ is defined as CFAC in the program.

To find the wedge equivalent at a point along the bone scan, the program starts with K=2 and indexes K until it finds the first value of optical scanner output from the wedge scan that exceeds the value of the optical scanner output from the point on the bone scan. Linear interpolation between the point K and the point K-l is then used to determine the equivalent value of K to use in the integration.

The bone scan is broken into ten approximately equal segments for the integration. The integration formula used is

$$A = CFAC * \int_{J=IS}^{J=IE} K(J) * AMV$$

where AMV = $\frac{1}{2}$ at the end points of each interval and AMV = 1 at all internal points.

The FORTRAN language program listing and flow chart are shown in Figures 5 and 6. Discussions of individual subroutines, program listings and flow charts follow.

FIGURE 5.

MAIN PROGRAM LISTING

BONE DENSITY CALCULATIONS

```
C: BOXE DENSITY CALCULATIONS
    ; DIMENSION IW(1/0), IB(300), [0HAR(115)
  10: In(1)=0
    3 [R(1)=0
    ; NP=10
    ; // = 10
    ; 00 TU 8
   1: K 9= 1
    ; PALSE 21/6 .
   ; ANENE
   ; GU TU R
   9; KS=0
    ; TYPE 1000
1000; FURNAT(/,"SCAN SPEED")
    ; ACCEPT 2004, SPED
2004; FURMAT(F)
    ; CFAC=()3000.0)/(AN,*ANW)
   3: PAUSE 23MA
    ; PAHSE 21/6
    ; ANHENP
    ; WL=ANP*SPED/60.0
    ; TYPE 1018,NP,WL
1019; FURNATO"NUMBER OF SAMPLE POINTS: ">I>/>"BONE LENGTH (CM): ">E>/)
    ; TF(TPS)4,5,4
   4; TYPE 1019
1019; FORMAT(/,"
                     SEGMENT
                                 INTEGRATED CULVIS",/)
   5; I 9=NP/10
    ; 19=1
    ; IM=10
    ; AN=0.0
    ; 1=0.0
    ; AMV=0.5
    ; DO 60 I=1,10
  ; TH(TR)62,62,61
61; TH=TH+T
    ; 18=18-1
  62; DU 6/ J=IS, TE
    ; IBX= IB(J)
    ; DU 65 K=2,NW
    ; IF (IBX-IW(K))63,64,65
  63; KK=K-1
    ; X=KK
    ; INK=IW(KK)
    ; DYN=TBX-TWK
    ; DYD=IW(K)-IWK
    ; B= x+ (DYN/DYD)
; GC TG 66
  64; R=X
    3 60 TO 66
  65; CONTINUE
    ; PAUSE
  66; Y=P*ANV
```

; ΔN=ΔN+Y ; ΔN=1.0

FIGURE 5.

MAIN PROGRAM LISTING BONE DENSITY CALCULATIONS

```
61: CHATNER
    ; ; <= IF+1
    ; Y2=Y/2.0
    ; A=(A-Y2)*CFAC
    ; IF(IPS)6,7,6
   6; TYPE SAUM, I, A
onan: FURMAT(/,"
                                    ",E)
                      ", I, "
   /; A=Y2
  60; CONTINUE
    ; AR=(AR-Y2)*CFAC
    ; A=AR*(A.MA245/SPED)
    ; IYEE PERT, AR, A
2001; FORMAT(/,/,"
                         TOTAL:
                                     ", E, " ", E, /, /, /, /, /)
  R; TYPE PARP
2002; FORMAT("WAITING",/,/)
   ; ACCEPT 1002, KS, IPS
1009; FOWMAT(I,I)
   ; IF(KS)2,98,1
  98; IF(IPS)2,3,3
    ; END
```

6651 IBICHA 6466 NP 6461 NW6457 XS 6455 ANV 6451 COED 6445 CFAC 6442 6434 ANP WL 6431 6425 TPS 6024 $\mathbf{I} \ominus$ IR 6422 6400 IS 6416 IE ΔR 6413 6405 Δ 6377 DMV 6373 Ţ J 6366 TRX 6365 6364 X 6362 KK 6356 6355 TWK DYN 6352 6347 DYD 13 6344 Y 6341 6320 6321 6324

1325

In

MAIN PROGRAM FLOW CHART

BONE DENSITY CALCULATIONS

Page 1 of 4

INRPN - Internal Control Routine

This routine is the central program for the internal control of the analog to digital conversion routines and the wedge heading printing routine. The subroutine is essentially a decision and switching network. It tests KS and IPS to determine whether to set up for a bone or wedge scan and as to whether to print or not print headings in unscrambling the character series it detects from the character it acquires what function to perform. It detects whether or not a character is a normal alphabetic character (A - Z). If it is an alphabetic character, it prints the character. If the character is other than A-Z, it is interpreted and various other functions occur. The following are the characters recognized and the functions.

CHARACTER	PACKED CHARACTER from ASA-33 Code	FUNCTION
Space	40	Print space
:	41	Go wait for tab bar to be depressed, carriage return, then line feed
\$	44	End the routine
*	52	Convert analog to digital
/	57	Line feed one line
:	72	Print colon and one space, wait for carriage return, then line feed
;	73	Set up for analog to digital conversion

Although the program is lengthy and the planning of the original logic was rather complex, the final working routine is straightforward.

The following instructions were hand coded into the final version of the program so as to allow special controls by KS and IPS to skip preliminary headings for a wedge scan or rescan.

ADDRESS	INSTRUCTION	
4211	5612	JMPI
4212	4571	ADDRESS
4212	43/I	ADDKESS
4571	7450	SNA
4572	5775	JMPI (BRSC)
4573	7300	CLACLL
4574		JMPI (Tie)
4575	4216	(BRSC)
4576	4371	(Tie)
4577		
4371	1776	TADI (LIPS)
4372	7440	SZA
4373	5213	JMP (4213)
4374	1377	TAD (WEDGS)
4375	5217	JMP (4217)
4376	6425	(LIPS)
4377	6633	(WEDGS)

INPRN subroutine listing and flow chart are shown in Figures 7 and $8. \,$

INPRN SUBROUTINE LISTING

```
/ INITIAL PRINT ROUTINE
4200
      9000
             INPRN. 0
                                   / ENTRY
4201
      7300
                    CLA CLL
                                   / CLEAR A L
4202
                    TAD CRCR
      1363
                                   /GET CARRIAGE RETURN CHAR.
4203
                    JMS I PRIN
      4737
                                   / GO PRINT
4204
                    TAD 10
                                   / GET 10
      1010
                                   / SAVE LOC 10
4295
      3345
                    DCA SIG
4296
                    TAD MSKU
                                   / GET MASK CONSTANT
      1360
                                   / SET MSK
4207
      3347
                    DCA MSK
4210
      1766
                    TAD I LKS
                                   / GET KS
4211
      7450
                                                     JMPI (4571)
4212
      5216
                                                     (HAND CODED INSTRUCTIONS)
                    CLA CLL
                                   / CLEAR A L
4213
      7300
4214
                    TAD LOSTR
                                   / GET START OF CHARACTERS
      1367
4215
      5217
                    JMP LX
                                   / JUMP TO PROCEED
                                   / GET START OF BONE LIST
4216
                    TAD BLIST
      1370
             BRSC.
4217
                    DCA 10
      3010
             LX,
4220
      7300
             Llo
                    CLA CLL
                                   / CLEAR A L
                                   / GET MSK
4221
                    TAD MSK
      1347
4222
      7500
                    SMA
                                   / IS MSK 7700
4223
      5240 -
                    JMP LO77
                                   / NO
4224
                    CLA CLL
                                   / YES CLEAR A L
      7300
4225
                                   / GET NEXT CHARACTER
      1410
                    TAD I 10
4226
      3346
                    DCA SC
                                   / SAVE CHARACTER
4227
                    TAD SC
                                   / SET IN A
      1346
4230
      0347
                    AND MSK
                                   / GET UPR
                                   / SHIFT RIGHT 2
4231
      7012
                    RTR
4232
      7012
                    RTR
                                   / SHIFT RIGHT 2
4233
      7012
                    RTR
                                   / SHIFT RIGHT 2
                                   / SAVE PRINT CHAR
4234
                    DCA PRC
      3350
                                   / GET LOW MASK
4235
                    TAD MSKL
      1361
4236
                                   / SET MSK
      3347
                    DCA MSK
4237
      5246
                     JMP CKC
                                   / GO CHECK
                                   / CLEAR A L
42 49
      7300
             L077.
                     CLA CLL
42.41
                     TAD SC
                                   / GET SAVED CHAR
      1346
42.42
      0347
                     AND MSK
                                   / MASK
42 43
                                   / SAVE AS PRINT CHAR
      3350
                     DCA PRC
4244
                     TAD MSKU
                                   / GET UPR MASK
      1360
42.45
                                   / SET MSK
      3347
                     DCA MSK
                                   / CLEAR A L
42 46
      7300
             CKC.
                     CLA CLL
42.47
                                   / GET CHARACTER
      1350
                     TAD PRC
                     TAD M40
42.50
      1357
                                   /SUBTRACT 40 TO CHECK 40
                                   / IS CHARACTER NEGATIVE
4251
      7510
                     SPA
42.52
                     JMP NORMC
                                   / YES GO PROCESS NORMALLY
      5300
                                   / IS SPACE
4253
      7450
                     SNA
                                    / YES GET SPACE
4254
      5304
                     JMP SPCY
4255
      1352
                     TAD M1
                                   / SUBTRACT 1 TO CHECK 41
                                   / IS CHARACTER EXCLAMATION MARK
4256
      7450
                     SNA
                                   / YES GO WAIT FOR SPACE
4257
                     JMP WFTB
      5314
                                   / SUBTRACT 3 TO CHECK 44
42.60
      1354
                     TAD M3
                                   / IS CHARACTER CODE FOR END OF TAPE (DOLLA
4261
      7450
                     SNA
                                   / YES GO TERMINATE ROUTINE
42.62
      5334
                     JMP ENDT
4263
                     TAD M6
                                   / SUBTRACT 6 TO CHECK 52
      1355
1264
                                   / IS CHARACTER ASTERISK
      7450
                     SNA
                     JWP Callab ...
                                  / YES GO CONVERT AD
1265
      5332
```

```
4266
      1353
                    TAD M5
                                   / FLBTRACT 5 TO CHECK 57
4267
      7459
                    SNA
                                   / IS CODE FOR LINE FEED
4279
      5317
                    JMP LFDY
                                   / YES GO GET CODE FOR LINE FEED
                                   / SUBTRACT 13 TO CHECK 72
4271
      1356
                    TAD M13
1272
      7450
                    SNA
                                   / IS CODE FOR COLON
                                   / YES GO SET COLON CHARACTER A(0)
4273
      5306
                    JMP COCY
                                   / SUBTRACT 1 TO CHECK 73
42
      1352
                    TAD M1
42.
      7450
                    SNA
                                   / IS CODE FOR SEMI COLON
4276
      5322
                    JMP SETAD
                                   / YES GO SET A D CONVERTER A(0)
4277
      7402
                    HLT
4300
      7300
            NORMC,
                    CLA CLL
                                   / CLEAR A L
4301
                    TAD PRC
                                   / GET CHARACTER
      1350
4302
      1351
                    TAD TRE
                                   / INSERT 0300 CODE
                                   / GO TO PRINT
4303
      5320
                    JMP PRNTC
                                   /GET SPACE
             SPCY,
4304
                     TAD SPCR
      1362
4305
      5320
                    JMP PRNTC
                                   / GO PRINT
                                   / GET COLON
4306
      1365
             COCY,
                    TAD COLC
4307
      4737
                    JMS I PRIN
                                   / PRINT CHARACTER
                                   / SPACE CHARACTER
4310
      1362
                    TAD SPCR
                    JMS I PRIN
                                   / PRINT CHARACTER
4311
      4737
4312
      4740
                    JMS I WATC
                                   / WAIT FOR CAR. RET.
                    JMP LFDY
                                   / GO LINE FEED
4313
      5317
             WFTB,
                     JMS I WATS
                                   / WAIT FOR SPACE
4314
      4741
                     TAD CRCR
                                   / CARRIAGE RETURN
4315
      1363
                                   / PRINT CHARACTER
4316
      4737
                     JMS I PRIN
                                   / GET LINE FEED
4317
      1364
             LFDY.
                     TAD LFCR
4320
      4737
             PRNTC.
                    JMS I PRIN
                                   VPRINT CHARACTER
4321
      5220
                     JMP L1
                                   / LOGPBACK
4322
             SETAD, TAD I LKS
                                   / GET VALUE OF KS
      1766
                                   / IS ZERO
4323
      7450
                     SNA
                     JMP SETBO
                                   / YES ZERO SET BONE
4324
      5330
432.5
      4742
                     JMS I ADWG
                                   / NO SET FOR WEDGE
                     DCA I LKS
                                   / SET KS TO ZERO
4326
      3766
4327
      5220
                     JMP L1
                                   / EXIT
                                   / SET BONE CONVERSION +0
                    JMS I ADBO
4330
      4743
             SETBO,
                     JMP L1
4331
      5220
                                   / EXIT
4332
      4744
             CONAD,
                    JMS I ADCO
                                   / GO TO AD CONVERT SUBROUTINE
                     JMP L1
4333
      5220
             ENDT.
4334
      1345
                     TAD S10
4335
      3010
                     DCA 10
4336
      5600
                     JMP I INPRN
                                  / EXIT
             PRIN.
                     PRINT
4337
      4434
43 40
      4400
             WATC.
                     WAITCR
      4407
4341
             WATS.
                     WAITSP
43.42
      4442
             ADWG
                     ADWEG
4343
      4460
                     ADBON
             ADBO.
4344
      4476
                     ADCON
             ADCO.
                                   / SAVE 10
4345
      0000
             S10.
                     0
      0000
                     (7)
                                   / CHARACTER SAVE
4346
             SC,
4347
      0000
             MSK.
                     Ø
                                   / WORKING MASK
4350
                                   / PRINT CHARACTER
      0000
             PRC,
                     0
                                   / TELETYPE 0300 INSERT
4351
      0300
             TRE,
                     0300
                    -0001
                                   / -1
4352
      7777
             M1.
                                   / -5
4353
      7773
             M5,
                    -0005
4354
      7775
             М3,
                    -0003
                                   / -3
4355
      7772
                    -0006
             M6.
4356
      7765
                    -0013
             M13.
                                   / -
4357
       7749
                    -000
             M 400 .
```

JASK

MSKUs

36.

7.704

4361	0077	MSKL,	00 77	/ LUWER MASK
43.62	9240	SPCR.	0249	/ SPACE
4363	0215	CRCR>	M215	/CARRIAGE RETURN
4364	P212	LFCR	0212	/ LINE FEED
4365	0272	COLC	0272	/ CULON
4366	6447	LKS,	6447	/ LOCATION OF KS
4367	6465	LOSTR,	6465	/ LUC OF CHAR. STRING
4370	6640	BLIST	6640	/ LUCATION OF BONE START

ADB0 4343 **ADBON** 4460 ADC0 4344 4476 **ADCON** ADWEG 4442 ADWG 4342 BLIST 4370 BRSC 4216 CAR 4406 CKC 4246 CLCONB 4475 CLCONW 4457 4516 CLK 4555 CLOCK CLOK 4556 CNTR 4561 COCY 4306 COLC 4365 CONAD 4332 CONCOM 4542 CONLP 4512 CRCR 4363 C200 4456 C300 4474 **ENCL** 6374 **ENDT** 4334 IB4566 ICNTR 4560 INPRN 4200 4564 ΙW LFCR 4364 LFDY 4317 LKS 4366 LOSTR 4367 L077 42.40 LX4217 4220 L1 MSK 4347 MSKL 4361 MSKU 4360 4352 М1 M13 4356 МЗ 4354 M40 4357 M5 4353 116 405

FIGURE 7.

INRPN SUBROUTINE LISTING

Page 4 of 4

NORMC	4300
₩ 5	4567
NV	4563
NW'	4565
04	4554
PRC	4350
PRIN	4337
PRINT	4434
PRNTC	4320
RDKEY	4426
RPPT	44

INPRN SUBROUTINE FLOW CHART

Page 1 of 5

INPRN SUBROUTINE FLOW CHART

Page 5 of 5

WAITCR - Wait for Carriage Return

This subroutine reads a character that is typed on the keyboard then sends back the character to print on the carriage. The character is then tested to see if it is a carriage return character. If the character is a carriage return character, then an exit from the subroutine is performed otherwise the routine returns to repeat the above process.

WAITSP - Wait for Space Character

This subroutine is identical to the one above except that a space (tab) bar character is sought.

RPT - Repeat

This subroutine reads a character from the keyboard then prints the character on the carriage. (When the teletype is operating on line with the computer, striking a key does not cause the print bars to strike the carriage. The computer must send signals to cuase the latter to happen.)

See Figures 9 and 10 for the listings and flow charts of WAITCR, WAITSP, and RPT.

FIGURE 9.

WAITCR, WAITSP, AND RPT LISTINGS

```
*4400
            /WAIT FOR CARRIAGE RETURN
                                 / ENTRY
            WAITCR, 0
4400
     0000
                                 / READ CHARACTER AND PRINT BACK
                   JMS RPT
4491
      4216
                                 / ADD COMP OF CARRIAGE RETURN
                   TAD CAR
4492
      1206
                                 / SKIP AC ZERO
                   SZA
4493
     7440
                                 / WAIT FOR CARRIAGE RETURN
                   JMP .-3
4494
      5201
                    JMP I WAITCR / EXIT
4495
      5600
                    -215
4406
      7563
           CAR
                                 / ENTRY
     9999
           WAITSP, 0
4407
                    JMS RDKEY
                                 / READ KEYBOARD
      4226
4410
                                 / ADD COMP OF SPACE BAR
                    TAD SPB
      1215
441!
                                 / SKIP AC ZERO
                    SZA
4412
      7443
                                 / WAIT FOR SPACE BAR
4413
      5210
                    JMP •-3
                    JMP I WAITSP / EXIT
      5697
4414
4415
      7540
            SPB.
                    -240
            / REPEAT READ CHARACTER AND PRINT BACK
                                 / ENTRY TO REPEAT
4416
      9900
            RPT,
                    ଉଉଉଉ
                                 / READ KEYBOARD
                    JMS RDKEY
4417
      4226
                                   SAVE IN XXX
                    DCA XXX
4420
      3225
                                    RELOAD XXX
                    TAD XXX
4421
      1225
                                 / PRINT CHARACTER
                    JMS PRINT
4422
      4234
                                 / RELOAD XXX
                    TAD XXX
4423
      1225
                                 / EXIT
                    JMP I RPT
4424
      5616
                                  / SAVE LOCATION
                    0000
4425
      6669 XXX
```

Page 1 of 1

RDKEY - Read Keyboard

This routine reads one character from the keyboards.

PRINT - Print

This routine takes a character and sends it from the computer to the teletype to cause the type bars to strike the carriage.

ADWEG - Set AD for Wedge

This routine sets up the analog to digital conversion routine for the wedge scan.

ADBON - Set AD for Bone

This routine sets up the analog to digital conversion routine for the bone scan.

See Figures 11 and 12 for listings and flow charts of RDKEY, PRINT, ADWEG, and ADBON.

FIGURE 11.

RDKEY, PRINT, ADWEG, AND ADBON LISTINGS

```
/ READ KEYBOARD
4426
      ଜ୍ଜ୍ନ
             RDKEY, 0
                                  / ENTRY
4427
      6932
                    KCC
                                  / C DAR FLAG
4430
      6031
                    KSF
                                  / S P KB FLAG=1
4431
      5230
                    JMP --1
                                  / NEL.UNN TO WAIT
4432
      6034
                    KRS
                                  / READ KEYBGARD
4433
      5626
                    JMP I RDKEY
                                  / EXIT
             / PRINT A CHARACTER
4434
      aaaa
            PRINT, Ø
                                  / ENTRY
4435
                    TLS
      6046
                                  / PRINT CHARACTER
      6041
4436
                    TSF
                                  / SKIP FLAG SET
                    JMP --1
4437
      5236
                                  / WAIT
4440
      7300
                    CLA CLL
                                  / CLEAR A L
4441
      5634
                    JMP I PRINT
                                  / EXIT
             / SET AD FOR WEDGE
      0000
             ADWEG. 0
4442
                                   / ENTRY
4443
     7201
                    CLA IAC
                                  / CLEAR A AND SET TO 1
4444
     7041
                    CIA
                                  / COMPLEMENT TO MAKE NEG
4445
                                  / ADD ADDRESS
     1364
                    TAD IW
4446
      3362
                    DCA X
                                  / SAVE IN X
4447
                    TAD NW
      1365
                                  / GET ADDRESS OF NW
4450
     3363
                    DCA NV
                                  / SET IN NV
4451
      1257
                                  / GET CLOCK CONSTANT
                    TAD CLCONW
4452
                                  / SET CLOCK
      3355
                    DCA CLOCK
4453
     1256
                                   / GET WEDGE COUNTER DECIMAL 200
                    TAD C200
4454
     3361
                    DCA CNTR
                                  / STORE IN COUNTER
4455
      5642
                    JMP I ADWEG / EXIT
4456
     0310
             CSQQ>
                    9310
                                  / DECIMAL 200
4457
      6030
             CLCONW - 1750
                                   / MINUS DECIMAL 1000
             / SET AD FOR BONE
4460
      \alpha \circ \alpha \alpha
             ADBON, O
                                  / EN TRY
4461
      7201
                                  / CLEAR A AND SET TO 1
                    CLA IAC
4462
      7041
                    CIA
                                  / COMPLEMENT TO MAKE NEG
4463
                                  / ADD ADDRESS
     1366
                    TAD IB
4464
      3362
                    DCA X
                                  / SAVE IN X
4465
     1367
                    TAD NP
                                   / SET ADDRESS OF NP
4466
                                  / SAVE IN NV
      3363
                    DCA NV
                                   / GET CLOCK CONSTANT
4467
     1275
                    TAD CLCONB
4470
      3355
                    DCA CLOCK
                                  / SET CLOCK
4471
     1274
                    TAD C300
                                   / GET BONE COUNTER 300
4472
      3361
                    DCA CNTR
                                   / STORE IN COUNTER
                                  / EXIT
4473
     5660
                    JMP I ADBON
4474 6454
            C300,
                                   / DECIMAL 300
                    0454
4475
      6739
             CLCONB, -1750
                                   / MINUS DECIMAL 1000
```


ADCON - Convert AD

This subroutine is the working routine that waits to start when a microswitch closes on the densitometer, causes the analog to digital convert to convert information every second and stops when the limit microswitch on the densitometer opens.

The following is a description of the steps that occur in the subroutine. Refer to the following flow chart for the described steps.

- 1) The routine initializes itself by saving and setting certain locations in the memory.
- 2) A signal bit created by the microswitch closing on the densitometer is transferred into the computer. If the switch has closed a l bit is transferred into the A register.
- 3) A test is made to see if the 1 bit is in the \underline{A} register. If 1 bit is not in the \underline{A} register, the program returns to step 2. If the 1 bit is present, the program proceeds.
- 4) CONLP The analog to digital converter is selected to receive information.
- 5) The clock count is picked up.
- 6) The clock count is places in location CLOC (complemented member).
- 7) The internal clock (IKC) is enabled.
- 8) The computer waits for a clock pulse.
- 9) The clock count CLOC is incremented by one and tested to see if it is zero. If the count is not zero, the program returns to step 7. If the count is zero, the program proceeds to the next step. Note: This loop delays a total of 1.090439 millisecond.
- 10) The analog to digital converter is tested to see if it is ready to transfer. If the converter is not ready to transfer, the program waits. If it is ready, the program proceeds.
- 11) The values read by the converter are transferred into the computer.
- 12) The sign bit is removed by adding 4000 octal to the number supplied by the converter.
- 13) The number is divided by 2 by shifting the number one binary bit to the right.

- 14) The number is stored in either the wedge or bone storage area which has been preset by a previous routine ADWEG or ADBON.
- 15) The signal bit is again transferred into the computer. If the signal bit is still present, the following steps are performed otherwise the computer proceeds to step 20.
- 16) The counter ICNTR (which is a complemented number) is incremented by one. If ICNTR is not zero, the program proceeds back to step 4.
- 17) The clock is stopped.
- 18) The warning 70, 70 octal is placed in the A register.
- 19) The computer Halts.

At this point in the program, the program has either accepted over 200 wedge points or 300 bane points before the microswitch for the end of scan has opened. This is usually a terminal condition for this bone scan. To proceed, press the continue button on the computer if the scan is on a bone. The answers that are given will be in error and can be ignored. A readjustment on the densitometer may be made and another scan performed. If this stop occurs while scanning a wedge, the same procedure can be used and the program can be caused to rescan the wedge through control numbers. Using the speed of scan and the fact that a point is taken every second, the maximum lengths of scan may be calculated. The wedge is usually 14 cm at .5cm/min. The bone lengths for 300 seconds and various speeds is given in the following table.

Speed cm/min	Scan Length cm	
1	5	
2	10	
5	25	

- 20) The counter in ICNTR is picked up and the number of points read into the machine calculated from this counter value.
- 21) The number of points is stored in a special location NV.
- 22) The clock is stopped.

- 23) Locations saved at the beginning of the routine are initialized.
- 24) An exit from the routine is performed.

See Figures 13 and 14 for listing and flow chart of ADCON.

/ CONVERT AD

gand

.N ₩ s

```
/ DEFINE CLUCK CONTROL INSTRUCTIONS
                    SCLF=6371
                    ENCL = 6374
                    STCL=6372
4476
      0000
            ADCON. O
                                  / ENTRY
4477
      7300
                    CLA CLL
                                  / CLEAR AL
4500
                    TAD 11
                                  / GET LUCATION 11
      1011
                                  / SAVE LUCATION 11
4501
      3353
                    DCA S11
4502
                    TAD X
                                  / GET LUCATION IN X
      1362
                    DCA 11
4593
      3011
                                  / SET LUCATION 11
4504
                    TAD CNTR
                                  / GET COUNTER
      1361
4595
      7041
                    CIA
                                  / COMPLEMENT
                    DCA ICNTR
                                  / SET IN ICNTR
4506
      3360
4507
                    LAS
                                   / TRANSFER SIGNAL BIT
      7604
                                   / SKIP ON MINUS (CLOSED CIRCUIT)
2510
                    SMA
      7500
4511
      5307
                    JMP .-2
                                   / WAIT FOR SIGNAL
            CONLP, ADCV
                                   / SELECT CONVERT AD
4512
      6532
                                                             6532
                    CLA CLL
                                   / CLEAR A L
4513
      7300
                    TAD CLOCK
                                   / GET CLCCK
4514
      1355
                    DCA CLOK
4515
      3356
                                   / SET CLOCK ADDRESS
4516
             CLK.
                    ENCL
                                   / ENABLE CLOCK
      6374
                    SCLF
4517
      6371
                                   / SKIP ON CLOCK FLAG SET
                                   / WAIT FOR CLCCK FLAG
4520
                    JMP .-1
      5317
                                   / INCREMENT AND SKIP IF ZERO
4521
      2356
                    ISZ CLOK
4522
      5316
                    JMP CLK
                                   / GO WAIT CLOCK INCREMENT
4523
      6531
                    ADSF
                                   / SKIP ON AD FLAG SET
                                                             6531
                                   / JUMP BACK TO WAIT
452.4
      5323
                    JMP .-1
4525
      6534
                                   / READ AD CONVERTER BUFFER
                    ADRB
4526
      1354
                    TAD 04
                                   / ADD 4000 OCTAL
4527
                                   / CLEAR LINK AND ROTATE RIGHT 1 (DIVIDE B
      7110
                    CLL RAR
4539
      3411
                    DCA I 11
                                   / STORE INDIRECTLY (INDEXED VALUE IN 11)
                                   / TEST SWITCH CLOSED
4531
      7604
                    LAS
4532
      7500
                    SMA
                                   / NEG IF SWITCH CLOSED
4533
                                   / CONVERSION COMPLETE (SWITCH OPEN)
      5342
                    JMP CONCOM
4534
      2369
                    ISZ ICNTR
                                   / INCREMENT COUNTER AND SKIP IF ZERO
4535
                                   / CONVERT AD
      5312
                    JMP CONLP
4536
      7300
                    CLA CLL
                                   / CLEAR A L
4537
                                   / STOP CLOCK
      6372
                    STCL
                                   / GET WARNING 7070
4574
      1357
                    TAD WA
      7402
4521
                    HLT
                                   / HALT
4542
      7300
             CONCOM, CLA CLL
                                   / CLEAR A L
                                   / GET COUNTER REMAINING AND SUBTRACT
4543
      1360
                    TAD ICNTR
4544
      7001
                                   / INCREMENT COUNTER FOR LAST POINT
                    IAC
4545
      1361
                    TAD CNTR
                                  / FROM BASE VALUE CNTR
4546
      3763
                    DCA I NV
                                  / SAVE IN NUMBER OF VALUES
4547
      6372
                    STCL
                                  / STOP THE CLOCK
4550
      1353
                                  / GET SAVED LOCATION 11
                    TAD S11
4551
                                  / STORE IN LOCATION 11
      3011
                    DCA 11
                                  / EXIT
4552
      5676
                    JMP I ADCON
4553
      9999
                                  / SAVE 11
             S11,
                    0
4554
      4000
                                   / 4000 OCTAL CONSTANT
             040
                    4000
4555
      ପ୍ରଥମ
                                  / CLOCK SET VALUE (COMPLEMENT)
             CLOCK, 0
                                  / WORKING COMPLEMENT
4556
      9999
             CLOK
                    0
4557
      7070
             WA
                    7070
                                  / WARNING 7070
      \omega and \omega
4569
                                   / COMPLEMENTED COUNTER FOR SCAN LENGTH
             ICNTR, Ø
      1,46.6
4561
                                  / CHARRED FUR SO . LENGTH
             CNTR
                    0
43.62
                                                   CA STOP
      a
                                           I UF A
                                   1 100
             Χ×
                    (1
```

1 (1)

4564 4565 4566 4567	7325 6457 6651 6461	/ **** IW, NW, IR, NP,	THE FOLLOWING ADDRESS AS MAY HAVE TO BE CHANGED **** 7325 / MEDGE ANDRESS 6457 / NEWBER OF UNDEE POINTS ADDRESS 6461 / NEWBER OF BONE POINTS
		ROKEY RPT SC SCLF SETAD SETBO SPB SPCR SPCY STCL S10 S11 TRE WA WAITCR WAITSP WATC WATS WFTB X XXX	

Page 2 of 3

RDYSP - Read Special Tape

The following routine is a special purpose program that was used in the creation of the final working program. Once this routine had done its initial job, it was destroyed by the working program. However, this program could be read into the machine and used to create new heading and control information. Caution: Other parts of the program could be affected because they refer to addresses within the character string.

This routine is used to read in a special tape consisting of a string of control characters and heading data, packs this information into a condensed character form and stores this information is serial sequence in the memory.

The following is the character string tape that was processed by this program. Refer to subroutine INPRN for the manner in which the characters are interpreted.

/SUBJECT NAME:SUBJECT NUMBER:EXPERIMENTAL UNIT:DATE OF RADIOGRAPH:
DIET://DATE OF SCANNING: OPERATOR OF XRAY MACHINE:OPERATOR OF
DENSITOMETER://BONE:BONE SITE:TYPE OF WEDGE:TYPE OF SCAN:UNITS
OF OUTPUT:///;WEDGE!*\$;/BONE!*////\$

See Figures 15 and 16 for RDYSP listing and flow chart.

```
*7000
             / READ IN SPECIAL TAPE
7999
      7300
             RDYSP, CLA CLL
                                   / CLEAR A L
7001
                     TAD 10
      1010
7002
      3257
                     DCA SL10
                     TAD ICHAR
7003
      1260
7004
                     DCA 10
      3010
                     JMS I READT
7005
      4653
             RDLO,
7006
      7450
                     SNA
7007
                     JMP RDLO
      5205
                     JMP RDL02
7010
      5212
                     JMS I READT
7011
             RDL01,
      4653
             RDLO2. AND ML77
7012
      0254
7013
                     CLL
      7100
7014
      3256
                     DCA XX
70/15
      1256
                     TAD XX
7016
                     RTL
      7006
7017
      7006
                     RTL
7020
                     RTL
      7906
7021
      3255
                     DCA UHC
                     TAD XX
7022
      1256
7023
      1231
                     TAD M44
7024
                     SNA
      7450
7025
      52.42
                     JMP ENDR
                     CLA CLL
7026
      7300
                     JMS I READT
7027
      4653
7030
      @254
                     AND ML77
7031
      3256
                     DCA XX
7032
                     TAD XX
      1256
7033
      1255
                     TAD UHC
7034
      3410
                     DCA I 10
7035
      1256
                     TAD XX
7036
      1261
                     TAD M44
7037
                     SZA
      7440
7040
      5211
                     JMP RDLC1
7041
      5244
                     JMP EXITR
7042
      1255
                     TAD UHC
             ENDR.
70.43
                     DCA I 10
      3410
             EXITR, TAD 10
79.44
      1019
70/45
      3256
                     DCA XX
70.46
      1257
                     TAD SL10
70 47
      3010
                     DCA 10
70.50
       1256
                     TAD XX
7051
       7402
                     HLT
7052
       5252
                     JMP .
7053
       4426
             READT, 4426
                              / READ TELE **** THIS MAY HAVE TO BE CHANGED
                                    / MASK
7054
      0077
             ML 77,
                     0077
                                    / UPPER HALF CHARACTER
7055
      0000
              UHC
                     0
                                    / LOWER SAVE
7056
      aaaa
              XX,
                     0
7057
      0000
                     Ø
                                    / SAVE 10
              SL10.
                              / CHARACTER STORAGE **** THIS MAY HAVE TO BE CO
       6324
7060
              ICHAR, 6324
7061
                    -0044
                                    / MINUS 44 OCTAL
       7734
             1444
```

ENDR	70 42
EXITR	7044
ICHAR	7060
ML77	7054
M44	70161
RDLO	7005
RDL01	7011
RDLOS	7012
RDYSP	7000
READT	7053
SL10	7057
UHC	7/155
XX	7056

Page 2 of 3

C. Program Loading, Operation and Output

The general information in the Digital Equipment Corporation Manual F-81 (PDP-8, A High Speed Digital Computer), Manual F-85 (PDP-8 Users Handbook), and Manual DIGITAL 8-2-S (PDP-8 Fortran Programming Manual) is assumed to be available and the user is assumed to be familiar with the information in these manuals. These manuals contain detailed descriptions of operating instructions for the computer.

Appendix 6, page 242, of Manual F-85 and Appendix C, page 47 of Manual 8-2-S give the RIM loader, the sequence to use the RIM loader to load a BINARY LOADER, and information to use the BINARY LOADER to load a binary program tape. The sequence of usage is as follows.

1) The RIM loader is manually loaded through the console into locations 7756 through 7777. This loader is as follows:

ADDRESS	CONTENTS
7756	6032
7757	6031
7760	53 57
7761	6036
7762	7106
7763	7006
7764	7510
7765	53 57
7766	7006
7767	6031
7770	5367
7771	6034
7772	7420
7773	3776
7774	3376
7775	53 56
7776	0000
7777	0000

- 2) After the RIM loader is in the machine the BINARY LOADER may be loaded from paper tape. The BINARY LOADER is a short program on paper tape that is in the PDP-8 tape library and is identified on the tape label. This tape is loaded by using the instructions in Appendix 6 of Manual F-85 or Appendix C of Manual 8-2-S for the use of the RIM loader.
- 3) The bone density program is on a binary tape that may be loaded by the binary loader. When the binary loader is in the machine, the instructions for using the binary loader are in Appendix 6 of Manual F-85 or Appendix C of Manual 8-2-S. Note: The binary loader may be restarted at 7756 in addition to 7777.
- 4) Once the program is loaded, it may be started at location 0201.

 All console switches should be in normal operating positions.

 The switch register switch corresponding to bit 0 must always be down. The control switching from the optical scanner limit switches is brought to the computer through this position of the switch register.

The program at various stages prints out the word WAITING. The program is waiting for two single digit control numbers to be typed into the computer. These two numbers are designated KS and IPS and are entered in that sequence. The following table indicates the options specified by these control numbers.

KS*	IPS*	FUNCTION	SPEED	OUTPUT
9	9	Scan wedge and print	5.0 cm/min only	NA
9	0	Scan wedge, no heading	5.0 cm/min only	NA
- 9	0	Scan bone	Accept speed entry	Total only
0	- 9	Scan bone	Accept speed entry	l/l0 increments and total
0	0	Scan bone	Use previous speed	Total only
0	9	Scan bone	Use previous speed	1/10 increments and total

First WAITING always: 9,9 or 9,0 Second WAITING always: -9,0 or 0,-9

*Note: The value of the numerical digit other than zero is immaterial. The number may be any single digit because the program determines only if it is less than, equal to, or greater than zero.

Step-by-step operating procedures are given in Section II of this report.

Samples of output from this program are found in Figure 17.

Reference can be made to these while reading the following descriptions.

There are several options on output for this program. On the wedge scan identifying information may be typed in following headings that are printed out or the wedge can be scanned without the headings. Example 1 on the output shows control numbers 9,0, then WEDGE, then WAITING. This is the sequence for no heading information. Example 2 shows the 9,9 entry which causes the wedge to be scanned and headings to be printed. Following the colon on each entry any character may be typed up to a carriage return which terminates the line. The computer proceeds to print the next line of identifying information and/or skip line spaces. When the heading is finished the computer causes the typewriter to space up several lines and types WEDGE indicating that the computer is ready to scan the wedge. When the wedge has been scanned, the computer goes back to a waiting status ready to receive the next control numbers.

The bone scan phase has one input and several output options. In example 3, the entry -9,0 is used calling for a speed change and no print out of one-tenth segments of the total integrated section. The output is as shown. The typewriter first types SCAN SPEED then pauses for the operator to make an entry to indicate the scan speed. The computer accepts the scan speed, then types BONE to indicate that the machine is waiting for the bone. When the bone is scanned, the printout gives the number of sample points and the length scanned. This output is obtained on all bone scans. Then the total integrated area is printed, followed by a scaled number to correspond to a wedge equivalent value.

Example 4 illustrates the output when the printing of the ten segments of the total area is desired.

Examples 5 and 6 show typical printouts of bone scan data for which a new scan speed was not entered.

FIGURE 17.

Page 1 of 6

PROGRAM OUTPUT EXAMPLES

WAITING

9.0 WEDGE

Page 2 of 6

FIGURE 17. PROGRAM OUTPUT EXAMPLES

..AITING

9,9
SUBJECT NAME:
SUBJECT NUMBER:
EXPERIMENTAL UNIT:
DATE OF RADIOGRAPH:
DIET:

DATE OF SCANNING: OPERATOR OF XRAY MACHINE: OPERATOR OF DENSITOMETER:

FORM:
PONE SITE:
TYPE OF WEDGE:
TYPE OF SCAN:
UNITS OF OUTPUT:

WEDGE

FIGURE 17.

Page 3 of 6

PROGRAM OUTPUT EXAMPLES

WAITING

-9,0

SCAN SPEED5.0

RONE

NUMBER OF SAMPLE POINTS: +156 BONE LENGTH (CM): +0.130000E+2

TOTAL: +0.627792E+4 +0.307618E+1

FIGURE 17. PROGRAM OUTPUT EXAMPLES

Page 4 of 6

WAITING

0 - 1

SCAN SPEED 5.0

BONE

NUMBER OF SAMPLE POINTS: +156 BONE LENGTH (CM): +0.130000E+2

SEGMENT	INTEGRATED COUNTS	
÷ 1	÷0.564274E+2	
÷ 2.	÷@•2@@355E÷3	
+3	+0.332119E+3	
+ 4	+0.467211E+3	
+5	+0.598286E+3	
+6	+0.731374E+3	
+ 7	+0.805087E+3	
+ 8	+0.921055E+3	
+9	+0.1030568+4	
+10	+0-114843E÷4	
TOTAL:	+@•629086E+4	+0.308252E+1

Page 5 of 6

FIGURE 17. PROGRAM OUTPUT EXAMPLES

MAITING

O)

BONE

NUMBER OF SAMPLE POINTS: +156 BONE LENGTH (CM): +0.130000E+2

SEGMENT	INTEGRATED COUNTS	
+ 1	+0.537312E÷2	
+2	+0.2002793÷3	
+3	+Ø•333556E÷3	
+ 4	+0.466897E+3	
÷ 5	+0.599473E+3	
+6	+0.733128E+3	
+ 7	+0.804256E+3	
+8	+0.919658E+3	
+9	+0.103336E+4	
+16	+0.115105E+4	
TOTAL .	+0 • 629595E+4	+0.308501E+1

FIGURE 17. PROGRAM OUTPUT EXAMPLES Page 6 of 6

. MAITING

(A)

BONE

NUMBER OF SAMPLE POINTS: +156 BONE LENGTH (CM): +0.130000E+2

T@TAL: +0.636448E+4 +6.358919.5+1

D. Interface - Computer to Densitometer System

The Computer System interface with the existing densitometer system consists of two signal lines: (1) the analog voltage signal that is functional with the optical density of the film, and (2) a switched ll5vac signal that indicates the scan limits (this voltage is the chart drive signal to the Speedomax G recorder connected to the densitometer output). These two input signals along with the operator inputs to the Teletype Input/Output unit provide complete interface with the original system.

The details of the connections appear in Section V of this document.

IV. SYSTEM MAINTENANCE

The digital system components supplied on this contract were chosen to provide long-life trouble-free operation under the anticipated operating conditions. However, a system of this complexity should be checked in accordance with some periodic maintenance program to assure operation meeting original specifications.

The system user should formulate a maintenance program compatible with his needs and operating schedules. The following outline provides a basis for a comprehensive system maintenance program:

- Specific system components should be maintained as outlined in manufacturers instruction manuals.
- 2) The computer program should be loaded into the computer at least once a week.
- 3) The digital computer should be checked periodically (every one to three months) by means of the diagnostic tapes supplied by the computer manufacturers. Any computer malfunctions should be corrected by a factory representative.
- 4) Teletype machines are limited-life devices and require maintenance from time to time. This machine should be operated no more than necessary (when the system is ON but idle for long periods of time, the switch on the front of the teletype machine should be switched to the OFF position). Service and maintenance on this unit should be performed by the computer representative or by a qualified teletype serviceman.

A maintenance program encompassing the foregoing points should assure optimum system operation. Factory representative service on the computer system (including the teletype machine) can be obtained either on an "ON-CALL" or on a "MAINTENANCE CONTRACT" basis. A primary advantage of contract maintenance is that the periodic diagnostic checks are included as part of such a contract.

V. CIRCUIT DOCUMENTATION

A block diagram of the bone density instrumentation in use at TWU is shown in Figure 18. The dashed blocks indicate the existing analog instrumentation and the solid blocks indicate the digital instrumentation supplied on this contract. The Knorr-Albers Scanning Microphotometer contains a mechanical assembly, optical system, photocell and preamplifier, and limit switches to provide the following signals:

- 1) An analog voltage functional with the optical density
 (transmittance) of the film being scanned;
- 2) A signal line that provides 115VAC during the scan period.

In the existing instrumentation, a Leeds & Northrup Speedomax G Servo Recorder is used to follow the preamplifier output voltage and the ll5VAC signal is used to advance the chart paper through the recorder.

The digital computer system is programmed to duplicate the computations of the analog system and requires the same two sets of information: (1) the analog voltage functional with film density, and (2) the signal indicating the scan limits. Since the basic range of the microdensitometer preamplifier output voltage is about 5 millivolts, an amplifier to amplify this signal to the 10 volt level required by the Analog-to-Digital (A/D) Converter in the digital computer. An isolated ground amplifier (Astrodata Model 885) is used to isolate the system grounds, and the l15VAC scan signal is isolated by means of a relay.

The system interconnections are shown in Figure 19. The circuit details of the microphotometer recorder can be found in Leeds & Northrup Drawing SSS-672-A-10 and the circuit details of the microphotometer can be found in Leeds & Northrup Drawing D-2145 (these drawings are part of the documentation on the existing analog system). As a matter of convenience, connections were made at the terminal strip in the microphotometer Speedomax G Recorder.

The Astrodata amplifier and isolating relay are mounted in a chassis assembly located in the top of the computer rack. The circuit diagram

FIGURE 18. BLOCK DIAGRAM OF BONE DENSITOMETRY INSTRUMENTATION

FIGURE 19. BONE DENSITY COM

of this assembly is shown in Figure 20. A meter connected to the output of the amplifier provides the operator with a means to set and/or check the input voltage to the A/D Converter (0 to -10 volts).

The analog voltage from the Astrodata amplifier is connected to the input terminals of the A/D Converter in the digital computer. The scan limit relay provides a contact closure to the computer indicating the scan period. These connections are made at spare terminals in the A/D Converter, and are connected through a spare cable in the computer to the Switch Register (BIT 1). (These connections are documented on the computer drawings.) The program utilizes this bit in the program to sense scan limits (see Section III). Teletype connections are not shown in Figure 19 because this unit is included as part of the computer. Note that the power switch on the computer activates all components in the digital system.

Tests with the digital system indicated that the microdensitometer preamplifier drift was excessive and did not permit good repeatability. The vacuum tube preamplifier was replaced with a transistorized unit exhibiting far superior drift characteristics. The diagram of this unit is shown in Figure 21 and replaces the "Lamp Control and Amplifier Panel" shown in Leeds & Northrup Drawing D-2145. Operating controls and characteristics were maintained as in the original preamplifier unit.

FIGURE 20. BONE DENS

ITY COMPUTER AMPLIFIER

FIGURE 21. KAMAN INSTRUMENTS MIC

OPHOTOMETER PREAMPLIFIER